BEFORE THE

KANSAS CITY BOARD OF PUBLIC UTILITES

Prepared Direct Testimony of

Craig E. Brown

Issue:

Electric Revenue Requirements Electric Cost of Service Electric Rate Design

June 2023

1 I. Introduction

2	Q.	Please state your name and business address.
3	А.	Craig E. Brown, 9400 Ward Parkway, Kansas City, MO 64114.
4	Q.	What is your occupation?
5	А.	I am employed by 1898 & Co., a division of Burns & McDonnell Engineering
6		Company, Inc. (hereinafter called "1898 & Co."), as a Senior Project Manager in
7		the Financial Analysis and Rate Design business line. 1898 & Co. is a business,
8		technology and security solutions consulting firm serving multiple industries,
9		including the electric power industry. As a part of Burns & McDonnell, 1898 &
10		Co. draws on 125 years of experience.
11	Q.	Please summarize your educational and professional experience.
12	А.	For the past 19 years, I have worked as a consultant, project manager, expert
13		witness, and analyst on utility financial, ratemaking, and regulatory projects.
14		Since joining Burns & McDonnell in 2019 I have focused primarily on cost of
15		service, ratemaking, and regulatory consulting for electric utilities. Prior to
16		joining Burns & McDonnell, I worked for 15 years in the Rate and Regulatory
17		practice at Black & Veatch Management Consulting, where I was a Principal
18		Consultant and Rate and Regulatory Team Lead, consulting on projects for
19		electric, gas, water, and wastewater utilities. Prior to joining Black & Veatch in
20		2004 I was employed as an accountant and small business consultant at
21		independent firms in Overland Park, Kansas and Phoenix, Arizona. I graduated
22		from the University of Missouri – Columbia in 1997, with a Bachelor of Science
23		degree in Hotel and Restaurant Management. In 2004, I received a Master of

1	Business Administration degree with an emphasis in Finance from Rockhurst
2	University.

3	Q.	On whose behalf are you appearing?					
4	А.	I am appearing on behalf of the Board of Public Utilities of the Unified Government					
5		of Kansas City, Kansas and Wyandotte County, Kansas (BPU).					
6	Q.	Have you previously testified before this Board?					
7	А.	Yes. I testified before this Board in the BPU's two prior electric rate cases in 2010					
8		and 2017.					
9	Q.	What is the purpose of your testimony in this proceeding?					
10	А.	The purpose of my testimony is to support the 1898 & Co. study of electric					
11		revenue requirements, cost of service, and rate design recommendations,					
12		including detailed rate recommendations for rate changes effective July 1, 2023					
13		and July 1, 2024.					
14	Q.	Do you sponsor any exhibits?					
15	А.	Yes, I sponsor one exhibit: Exhibit CEB-1 – 2023 Electric Revenue					
16		Requirements, Cost of Service and Rate Design report (Report). This exhibit was					
17		prepared by me or under my supervision and direction.					
18	Q.	Please describe the study presented in the Report.					
19	А.	The report presents a comprehensive rate study prepared for the electric utility of					
20		the BPU. A comprehensive rate study includes three distinct phases:					
21		1. Revenue and revenue requirements,					
22		2. Cost of service, and					
23		3. Rate design.					

1	The revenue and revenue requirements phase develops a five-year financial
2	forecast of operations under existing rates. The forecast includes a plan for
3	financing the BPU's capital improvement program (CIP) with a mix of debt
4	financing and financing from annual operating revenues (cash financing). Rate
5	adjustments are projected to meet key financial metrics including debt service
6	coverage and minimum cash balances (measured in days cash on hand). The
7	overall goal of the revenue and revenue requirements phase is to determine the
8	overall revenue adjustment needed for the electric utility.
9	The goal of the cost of service (COS) phase is to determine each rate
10	classes' allocated share of revenue requirements for a single test year. Typically
11	for municipal utilities, the test year is based on the future year the rates will be
12	implemented, also known as the rate effective period. For BPU, I used a 2023 test
13	year. The cost of service study compares the allocated costs of each rate class to
14	the revenues generated by existing rates to provide an indication of cost recovery
15	of each rate class relative to the system average.
16	Rate design is the final stage of a rate study involves developing the
17	specific rate structure that allows the utility to recover its costs for a given test

19 class based on the cost of service study.

20 Q. How is your testimony organized?

- 21 A. My testimony is organized in six sections as follows:
- 22 I. Introduction

18

23 II. Revenue and Revenue Requirements

3

year based on the overall system increase and potentially targeted adjustments by

1		III. Cost of Service
2		IV. Rate Design
3		V. Miscellaneous Rate Manual Changes
4		VI. Summary
5	Q.	Please summarize your testimony.
6	A.	I recommend that BPU increases its base rate charges by 2.5% in 2023 and 2.5%
7		in 2024. I recommend the BPU begin to fund an operating reserve fund (ERC
8		Reserve) linked to fuel and purchased power costs that are recovered in the
9		Energy Rate Component (ERC). Based on the COS study results, I recommend
10		the BPU make targeted revenue adjustments by class to improve equitable cost
11		recovery by class.
12	II. Ro	evenue and Revenue Requirements
13	Q.	Please describe the process of determining the adequacy of existing electric
14		rates of the BPU.
15	A.	The adequacy of BPU's electric rates was reviewed over a five year period from
16		2023 through 2027 (the forecast period). The first step was to calculate the
17		revenue that would be generated in the forecast period using the BPU's existing
18		rates. This was accomplished by taking the BPU's forecast of energy sales in
19		kilowatt-hours (kWh) (the Load Forecast) and projecting the billing determinants
20		in the forecast period. The billing determinants include the number of customers,
21		demand (in kilowatts (kW)), and energy (in kWh) for each rate class in the

1		detail in Section 3.1 of the Report. Next, we calculated the revenue that would be
2		generated in each year of the forecast period using the BPU's existing rates.
3	Q.	Why was a five year period chosen for the review?
4	A.	1898 & Co. uses a multiple year period to forecast the need for rate adequacy. We
5		recommend rate adjustments, if needed, be adequate for utilities to operate and
6		plan capital additions for at least two to five years.
7	Q.	What is the next step after determining revenue under existing rates?
8	A.	The next step is to determine the revenue requirements of the utility for each year
9		of the forecast period. Each year is treated as a separate test year for the purpose
10		of determining the rates applicable to customers in each year. Revenue
11		requirements are defined as the annual cash operating requirements of the utility.
12		The traditional revenue requirements for a municipal utility operating on a cash
13		basis include operation and maintenance (O&M) expenses including
14		administrative and general expenses (A&G), debt service payments, routine
15		capital outlay, cash financed capital projects, transfers to other entities, and other
16		expenses less other revenues.
17	Q.	How were these components of revenue requirements developed for the
18		BPU?
19	A.	As discussed in Section 3.2 of the Report, the revenue requirements for the
20		forecast period were primarily developed from the 2023 Budget. Following a
21		review of historical data, we worked with BPU management to develop escalation
22		factors to forecast O&M Expense, Other Revenues, and Other Expenses. BPU
23		provided a forecast of fuel costs, purchased power expenses, and SPP Integrated

Market activity. For the Capital Improvement Plan (CIP) used in the Study, we
 used the 2023 Budget CIP, which includes a forecast of projects and costs for
 2023 through 2027.

4 Q. How does the CIP relate to annual revenue requirements?

5 A. Two major components of revenue requirements are debt service and funding of 6 capital projects with annual rate revenues, also referred to as "cash financed 7 capital." The CIP, and the associated decisions on which projects are bond 8 financed versus cash financed, directly impact the annual revenue requirements to 9 be recovered in rates. While bond funding projects appropriately spreads the costs 10 of major projects over many years, the utility will also incur interest expense in 11 the process. In addition, base rates may need to be adjusted to meet debt service 12 coverage requirements. It is the debt service payment that becomes the annual 13 revenue requirement.

Alternatively, cash financed capital projects incur no interest expense, but the entire cost of the project is recovered in rate revenue in the year the project is completed. This places more pressure on a utility's cash reserves and operating cash balance.

18 Q. How were the bond financing versus cash financing decisions made in this 19 study?

A. The size and timing of the bond financing plan was developed collaboratively
between 1898 & Co. and BPU Staff. The Forecast Period includes one bond issue
in 2023 as recommended by 1898 & Co. This bond issue will provide \$50 million
in proceeds for funding CIP projects. All other projects in the CIP are cash

1		financed. The key driver for issuing a bond early in the study period is to improve
2		the BPU's operating cash balances that have been eroded in recent years by cash
3		financing all capital projects. By bond financing more capital projects, this allows
4		the BPU's cash balances to recover to target ranges, while reducing the need for
5		larger base rate increases.
6	Q.	What assumptions did you use for proposed bond financing?
7	А.	The BPU provided assumptions to 1898 & Co. for the proposed bond financing.
8		The bonds are projected to have a 30-year term and net interest costs of 5.0%.
9	Q.	What are the key drivers for determining the most efficient split between
10		bond and cash financing?
11	А.	There are two main drivers used when determining the most efficient capital
12		financing plan: debt service coverage and maintaining a minimum operating
13		reserve. As discussed in the testimony of Ms. Lori Austin, the target debt service
14		coverage for the electric utility is 1.6 times the annual debt service payment
15		without the inclusion of revenue from payments in lieu of taxes (PILOT). The
16		target operating reserve is 120 days of O&M expenses. The goal is to adjust the
17		mix between cash and bond financing to meet both targets while minimizing rate
18		increases. Maintaining adequate bond coverage requires managing the total utility
19		leverage with a combination of internally generated capital dollars and external
20		debt financing. Stronger credit metrics reduce the cost of external financing and
21		come from the use of additional internally generated capital dollars.
22	Q.	How does revenue under existing rates compare to the annual cash revenue
23		requirements in the forecast period?

1	A.	As shown on Line 60 of Table 3-4 of the Report, revenue at existing rates is less
2		than the revenue requirement beginning in 2024 resulting in annual deficits
3		through the remainder of the study period.
4	Q.	Please identify the annual deficits that make up this total.
5	A.	As shown in this reproduction of Table 3-9 from the Report, annual forecast
6		deficits range from \$836,000 in 2024 and increase up to a \$11.9 million deficit in
7		2027. This table also illustrates the impact of these deficits on days of O&M
8		reserved and debt service coverage. Based on the forecast, BPU's coverage is
9		below the 1.60 target beginning in 2024 and continuing throughout the rest of the
10		study period. Days cash on hand is also below the target throughout the forecast

11 and is reduced to 24 days by the end of the study period.

Financial Metrics Under Existing Rates												
Description 2022 2023 2024 2025 2026 2027								2027				
Revenue Surplus / (Deficiency) Under Existing Rates	\$	12,930,453	\$	786,157	\$	(835,770)	\$	(1,075,671)	\$	(12,937,820)	\$	(11,855,808)
Operating Cash Balance												
Beg Balance	\$	25,619,100	\$	38,549,553	\$	39,335,710	\$	38,499,941	\$	37,424,270	\$	24,486,449
Annual Cash Flow	\$	12,930,453	\$	786,157	\$	(835,770)	\$	(1,075,671)	\$	(12,937,820)	\$	(11,855,808)
End Balance	\$	38,549,553	\$	39,335,710	\$	38,499,941	\$	37,424,270	\$	24,486,449	\$	12,630,642
Days of O&M Reserved		82		74		76		72		47		24
Target Minimum Days Cash		90		120		120		120		120		120
Annual Debt Service Coverage without PILOT Revenue												
Total System Achieved (Total Debt)		1.85		1.61		1.48		1.47		1.54		1.53
Target Minimum Coverage		1.60		1.60		1.60		1.60		1.60		1.60

13 Q. What does the study recommend to resolve the annual operating deficits?

14 A. There are three primary recommendations to resolve the annual operating deficits

- 15 and allow the BPU to meet their target financial metrics in their stated financial
- 16 policies:

12

17 1. Two consecutive base rate increases of 2.5% on July 1, 2023 and July 1, 2024,

Creation of an ERC Reserve Fund to fund share of BPU's target of 120 days of
 cash on hand that is related to fuel and purchased power costs through the ERC
 rider, and

3. Issue a revenue bond for \$50 million to fund major capital projects planned for
2023 through 2025 to reduce the impact on BPU's cash balances.

6 Q. What is the purpose of the ERC Reserve Fund?

7 A. BPU has a financial policy to maintain a minimum of 120 days of cash on hand to 8 manage seasonal fluctuations in cash flows. The metric is a measure of days of 9 operating expenses including fuel and purchased power that are recovered in the 10 ERC rider plus all O&M expenses that are recovered in base rates. Historically, if 11 rates need to be adjusted to increase revenues to meet BPU's days cash on hand 12 target, it has solely been through increasing base rates. We recommend that the 13 portion of the 120 day target attributable to fuel and purchased power expenses be 14 maintained through the ERC rider and the amount attributable to all other O&M 15 expenses be maintained through base rate adjustments.

16 Q. How do you propose funding the ERC Reserve?

A. Based on current projections of costs recovered in the ERC of approximately \$80
million, the ERC Reserve should be approximately \$26 million. It would be
inappropriate to build to this amount all in one year, so we have proposed a
gradual build up of the reserve over a period of five years. This amounts to an
additional \$1.5 million per quarter (\$6 million annually) recovered in the ERC
rider.

23 Q. Are there any other changes to base rate and ERC cost recovery?

1	A.	Yes, there is. While the ERC is designed to recover all fuel and purchased power
2		costs in a rider separate from base rates, there are certain fixed capacity costs that
3		are recovered in base rates due to the fixed nature of the costs. Currently the
4		amount embedded in base rates is \$2.6 million per year. Since the last rate hearing
5		in 2017, the amount of fixed capacity contract costs have increased to \$4,642,930
6		per year. We propose to increase the amount recovered in base rates to this
7		amount and reduce the costs recovered in the ERC by approximately \$2 million
8		per year. This effectively has no impact on customer bills, as it is a transfer from
9		one rate to another, but it does impact the magnitude of the base rate increases
10		required.
11	Q.	Please summarize the need for the rate adjustments you are proposing?
12	A.	There are many interrelated issues that can lead to the need for rate increases. The
13		most common include inflationary increases to operating costs, issuance of new
14		debt, loss of customer load, maintaining adequate debt service coverage, and
15		maintaining healthy operating reserves. Included in the BPU's financial policy is
16		a requirement that net revenue for the electric utility should be equal to 160
17		percent of annual debt service payments, excluding PILOT revenue. With
18		recommendations from 1898 & Co., the BPU has set a goal of increasing
19		operating reserves to 120 days of cash on hand, which is a key driver in this rate
20		case, along with increasing the amount of fixed purchased power capacity
21		payments recovered in base rates from \$2.6 million to \$4.6 million. The latter has
22		a net zero impact on customer's total bills as the amount of purchased power costs
23		recovered in the Energy Rate Component (ERC) is reduced by \$2.0 million.

Q.

Do these proposed rate increases meet the BPU's financial goals?

A. As seen on Table 3-13 of the Report, the electric utility does meet its stated target
for both debt service coverage and operating reserve by 2025. The operating
reserve level is maintained at 120 days of O&M through the rate increases and
bond issuance, while the debt service coverage remains comfortably above 1.60
throughout the study period.

7 III. Cost of Service

8 Q. What is the purpose of the cost of service study you are sponsoring?

9 A. Many purposes exist for electric utility cost analysis ranging from designing 10 appropriate price signals to determining the share of costs borne by various rate 11 classes. Just as there are many uses for cost analysis, there are different types of 12 cost studies. In general, cost of service studies may be based on the embedded cost, 13 average cost, or marginal cost. Embedded cost of service studies analyze the costs 14 for a test period based on either the book value of accounting costs (a historical 15 period) or the estimated book value of costs for a forecast test year. For the BPU 16 the costs are forecasted costs for a 2023 test year that matches costs and revenues for the "Rate Effective Period." The Rate Effective Period is the year the new rates 17 18 will become effective. This results in matching costs and rates.

19 The purpose of the embedded cost of service study used in my testimony is 20 to allocate the test year revenue requirements between customer classes to 21 determine the cost to serve the class. In addition, the cost of service study 22 determines the required increase in revenues needed to recover the cost of service 23 from the customer class. It is the cost of service that forms the basis for allocating

the required rate increase among the customer classes. In addition, the cost of
 service study has guided various elements of the rate design to provide for a closer
 matching of cost causation and revenues.

4 Q. Why is a cost of service study a useful tool for determining rates?

5 A. Cost of service studies represent an attempt to analyze which customer or group of 6 customers cause the utility to incur the costs to provide service. The requirement to 7 develop cost of service studies results from the nature of utility costs. Utility costs are characterized by the existence of common and joint costs. In addition, utility 8 9 costs may be fixed or variable costs. Finally, utility costs exhibit significant 10 economies of scale. These characteristics have implications for both cost analysis 11 and rate design from a theoretical and practical perspective. The development of a 12 cost of service study requires an understanding of the operating characteristics of 13 the utility system. The application of a sound set of cost of service principles results 14 in a set of target revenues for each class that reflects a reasonable share of system 15 costs.

16 **C**

Q. Please explain the steps involved in developing the cost of service study.

17 A. The cost of service study follows a traditional three step process: functionalization, 18 classification and allocation. This three step process underlies the determination of cost causation. By identifying the functions of utility service: 19 generation, 20 transmission, distribution and customer for electric service and the costs for each 21 of these functions, the foundation is laid for the second step - classification. 22 Classification is the process of separating costs for each of these functions, the 23 functionalized costs into the utility services provided - demand (capacity), energy,

customer, and direct assignment. The allocation process involves determining how
 each rate class uses the various cost classifications. The key element of the cost
 allocation process is to determine the cost causation within each individual function
 and classification.

5

Q. How are costs functionalized?

6 A. In general, utilities maintain their accounting records consistent with these 7 functions. That is, there is separate accounting for generation such that we know both the capital costs and operation and maintenance expenses associated with the 8 9 production and purchase of electric energy. Similarly, we know the same 10 information for distribution based on the facilities that function as part of the 11 distribution The availability of accounting records system. permits 12 functionalization with little room for differences among cost analysts.

13

Q. How are costs classified?

A. Costs are classified based on the operational characteristics of the system: demand,
energy, and customer. **Demand** costs are capacity related costs associated with
plant that is designed, installed, and operated to meet maximum electric usage
requirements such as larger transformers or more localized distribution facilities,
which are designed to satisfy individual customer maximum demands. Measures of
maximum demand can include coincident peak demand, class non-coincident peak
demand and customer non-coincident peak demand.

Energy costs are those costs that vary directly with the production of energy
 such as fuel costs; other fuel related expenses or purchased power expense.

1 **Customer** costs are incurred to extend service to and attach a customer to 2 the distribution system, meter any electric usage, and maintain the customer's 3 account. Customer costs are largely a function of the number and density of 4 customers served and continue to be incurred whether or not the customer uses any 5 electricity. They may include capital costs associated with minimum size 6 distribution systems, services, meters, and customer billing and accounting 7 expenses.

8 Classification is an important step in the cost study since the classification 9 determines the type of allocation factor used in the study for each function. 10 Generally, production and transmission functions are classified as demand or 11 energy, while distribution functions are classified as demand or customer. In the 12 distribution plant, certain items such as meters and service lines are a function of 13 customers, so we are able to separately functionalize cost to the customer function. 14 Likewise assets and expenses related to substations are all demand related. 15 Accounts related to poles, conductor, and line transformers have both a demand 16 and a customer component, which has been estimated at 75% demand and 25% 17 customer for the BPU COS study.

18

Q. How are costs allocated?

A. We develop allocation factors for each of the classification categories based on cost
 causation principles. For example, energy-related costs are allocated to the
 customer classes on the basis of their respective energy (kWh) requirements at the
 generation level of the BPU's system, which includes applicable system energy
 losses. Customer-related costs are allocated using factors based on customer count,

1		sometimes weighted for various factors, such as meter costs. Demand allocation
2		factors are based on a measure of peak demand, generally a form of coincident peak
3		(CP) or non-coincident peak (NCP).
4	Q.	Please expand on how demand costs are allocated.
5	A.	There are many potential methods of demand cost allocation for electric utilities.
6		The methods essentially fall into three fundamental categories as follows:
7		1. Coincident Peak (CP) Methods
8		2. Non-Coincident Peak (NCP) Methods
9		3. Energy-weighted methods such as Average and Excess Demand
10		(AED).
11		Within each of these categories, there are numerous specific types of methods.
12		Further, to reflect the cost of an electric system, a complete cost of service study
13		requires application of more than one demand category of allocation factors. For
14		example, non-coincident peaks drive the allocation of distribution capacity while it
15		is some combination of coincident peaks and demand and energy methods for
16		generation. Within each classification category, there may be multiple specific
17		methods. Under the CP allocation category options include a single CP, four CP,
18		12 CP, winter/summer CP and so forth. Under the AED allocation there are a
19		number of methods that consider both demand and energy such as peak and
20		average, peaker methods and so forth. In any event, the choice of methods relies on
21		the concept of cost causation to choose the most appropriate method that reflects
22		those costs. NCP methods may use a variety of peaks other than the actual system
23		peak based on the peaks of individual service classifications or individual

customers. Cost causation requires the determination of the cost to serve each class
 of customers in a way that recognizes apparent cost responsibility and reflects the
 engineering and operating characteristics of the utility system. The key drivers in
 determining appropriate demand allocators are shown in the table below.

5

Cost Allocation Method Summary

Allocation Method	Assumption about Cost	Allocation Factor			
CP Methods	System peak loads	Class coincident demand			
	drive costs				
AED Methods	Peak and energy	Average demand,			
	drive costs	NCP and load factor			
NCP Methods	Class or customer peaks	Class or customer NCP			
	drive costs				

6

7 Q. What method do you use for BPU's production and transmission systems?

8 A. In the case of production, the choice of an allocation factor depends on how costs 9 are incurred for the capacity portion of production costs. It is a basic proposition of 10 reliable utility service that the utility must have adequate capacity to meet the peak 11 load requirements of its customers plus a level of reserves to maintain reliability. 12 In the Southwest Power Pool (SPP), that level of reserves is determined on the SPP 13 systemwide reserve requirements. This means that peak load causes capacity costs 14 to be incurred. However, when a utility plans its system, it uses a combination of 15 different technologies to meet both capacity and energy requirements by 16 considering the system load duration curve as well as peak load. As such both peak demand and energy requirements are considered in investment and operational 17

1		decisions. For BPU's COS Study, I used the energy-weighted method of Average
2		and Excess Demand (AED).
3	Q.	Has the BPU board previously adopted this method for allocating production
4		capacity costs?
5	А.	Yes. The BPU Board adopted this cost allocation methodology in 2010 and 2017.
6		The Board correctly recognized that this method represents cost causation for
7		production assets.
8	Q.	Please summarize the allocation process for the production function.
9	A.	The production function is classified as demand or energy. In the simplest form
10		energy costs are allocated to customers based on energy consumption. Demand
11		costs for production are allocated using the AED method discussed above. This
12		method recognizes the planning and operational considerations for the system. The
13		BPU does not plan capacity solely on the peak hour although that is a consideration.
14		Rather, the BPU considers other factors such as system load factor, annual fuel
15		costs, load duration and other relevant factors thus the assumptions related to AED
16		are applicable and using that method of allocation reflects cost causation.
17	Q.	Please summarize the allocation process for the transmission function.
18	А.	Transmission is allocated in the same way as generation demand. The
19		transmission system serves as the facilities required to move generation to loads.
20		This method assures that off peak loads such as lighting are allocated a portion of
21		transmission plant.
22	Q.	Please summarize the allocation process for the distribution function.

1	A.	Distribution plant is designed and sized to serve the non-coincident peak load of
2		customers. At the customer premise, for assets such as meters and service
3		connections, cost are allocated using a customer allocation factor. For common
4		facilities such as lines and substations the facilities recognize the increasing
5		diversity that exists as loads become more remote from the individual customer.
6		For these loads the use of a class NCP represents the most appropriate allocation
7		factor.
8	Q.	Please summarize the allocation process for the customer function.
9	А,	The costs related to the customer function represent costs that permit the customer
10		to access the delivery system and the costs associated with meter reading, billing
11		and customer service. The cost of service study recognizes that the cost of
12		facilities on the customers' premise is not the same for each class. Residential
13		meters, for example, have a lower installed cost than meters for other customer
14		classes. To recognize differences, the cost of service study uses weighted
15		customer accounts to reflect these differences in customer access facilities. The
16		weighted customer allocators differ for different accounts based on underlying
17		cost causation. The residential class has a weight of one and all other classes are
18		weighted relative to residential costs. Weights range from 0.50 to a high of 20 for
19		metering for the largest customers.
20	Q.	Please provide a high level summary of classification and allocation by
21		function.
22	А.	1) Production function:
23		a) Classified as demand and energy

1		b) Demand allocated using the AED method. Energy allocated on loss adjusted
2		energy
3		2) Transmission function:
4		a) Classified as demand
5		b) Demand allocated on AED to match generation
6		3) Distribution Substation:
7		a) Classified as demand
8		b) Allocated on class substation NCP
9		4) Distribution Transformer:
10		a) Classified as demand
11		b) Allocated on class secondary NCP
12		5) Distribution Lines and Poles:
13		a) 75% classified as demand and 25% classified as customer
14		b) Demand allocated on class NCP and customer allocated on weighted
15		customer
16		6) Distribution Services and Meters:
17		a) Classified as customer
18		b) Allocated on weighted Service and Meter costs
19		7) Customer function: (i.e. billing, meter reading and collections)
20		a) Classified to Customer
21		b) Allocated on number of customers or weighted customers
22	Q.	Does the cost of service study follow sound procedures and produce usable
23		results?

1	A.	Yes. The methods used in the cost of service study are guided by the Electric
2		Utility Cost Allocation Manual published by the National Association of
3		Regulatory Utility Commissioners (NARUC). As with any COS Study, there are
4		assumptions required relative to the choice of allocation methodology. As
5		discussed above those assumptions are justified by the analysis of the system and
6		its operation. In addition, certain assumptions were necessary in the development
7		of allocation factors where measured data was not available. For example, for
8		some customers the only measured data available was metered kWhs. In that case
9		it was necessary to estimate demand factors for NCP values used in the cost
10		study. Using both experience, regional benchmarking, and professional judgment,
11		these estimates were reasonable. Thus, the COS study produces usable results as
12		described above.

13 Q. Please summarize the results of the cost of service study.

A. The cost of service study provides the required revenue increase to produce the
proposed class revenue requirement for the test year 2023. The following table
summarizes the revenue deficiency by class as well as the indicated percentage
adjustments to each to reach cost of service.

Cost of Service Summary

		Total System	ſ	Residential	Sm	nall General Service	Ge	Medium neral Service	La	rge General Service	arge Power Service	USD 500	P	rivate Area Lighting		кск	Inte	BPU erdepartmental
Cost of Service Summary																		
	_		Г		_		_						_		_		_	
Revenue Requirement	\$	151,326,326	\$	57,714,955	\$	15,766,386	\$	30,367,094	\$	10,718,146	\$ 26,614,713	\$ 4,285,166	\$	1,616,531	\$	2,686,724	\$	1,556,611
Revenue from Current Rates	\$	147,635,440	\$	53,092,238	\$	17,308,307	\$	31,960,311	\$	11,559,431	\$ 27,320,996	\$ 4,295,902	\$	1,596,942	\$	-	\$	501,312
Class Deficiency	\$	3,690,886	\$	4,622,717	\$	(1,541,922)	\$	(1,593,218)	\$	(841,285)	\$ (706,283)	\$ (10,736)	\$	19,590	\$	2,686,724	\$	1,055,299
Adjustment for KCK and BPU Deficiency	\$	-	\$	1,468,359	\$	401,122	\$	772,587	\$	272,687	\$ 677,120	\$ 109,021	\$	41,127	\$	(2,686,724)	\$	(1,055,299)
Adjusted Class Cost of Service	\$	151,326,326	\$	59,183,315	\$	16,167,507	\$	31,139,680	\$	10,990,832	\$ 27,291,833	\$ 4,394,188	\$	1,657,658	\$	-	\$	501,312
Indicated % Adjustment		2.50%		11.47%		-6.59%		-2.57%		-4.92%	-0.11%	2.29%		3.80%				

1 The indicated adjustments in the table above show the required increase (or 2 decrease) to bring all classes to their exact cost of service. A general interpretation 3 of these results show that the residential class is under-recovering its allocated 4 cost of service more than any other class and the commercial and industrial 5 classes are all over-recovering their allocated cost of service.

6 III. Rate Design

7 Q. What is the first step in the rate design process?

8 A. The rate design process begins with a review of the class cost of service results. For 9 classes with indicated increases larger than the system average, a larger percentage 10 increase has been proposed. This mainly lies with the residential class, which shows 11 the need for the highest adjustment. For classes recovering more than the indicated 12 cost of service or are near their cost of service, a lower increase has been proposed.

Q. What is the proposed overall revenue increase in base rates for each of the two years?

15 A. The overall base rate revenue increase is 2.50% per year for both 2023 and 2024.

16 Q. How did you determine the rate adjustments for each class?

A. We capped the maximum increase for any class at 150% of the system average,
which results in a 3.75% increase cap for the residential class each year. The
commercial and industrial classes receive less than the system average based on the
lowest percentage that still allows the system to recover an overall increase of
2.50%. The recommended base rate adjustments by class are shown in the table
below:

Base Rate Summary						
Class	2023	2024				
Residential	3.75%	3.75%				
Small General Service	1.75%	1.73%				
Medium General Service	1.75%	1.73%				
Large General Service	1.75%	1.73%				
Large Power Service	1.75%	1.73%				
USD 500	2.50%	2.50%				
Private Area Lighting	2.50%	2.50%				
BPU Interdepartmental	2.50%	2.50%				

2 Q. How did you apply these class revenue targets to each class?

A. The details for each class are presented in Section 5.2 of the Report. In general,
there was an intentional effort to apply more of the rate increases to rate
components that recover fixed costs over those that recover variable costs.
Specifically, the majority of the rate adjustments were applied to the Customer
Charge, Facilities Charge, and Demand Charges, with more minimal changes to
Energy Charges.

9 Q. What rate increase is proposed for the residential rate for the test year?

10 A. The proposed increase is 3.75% on base rates. The increase for residential service
11 is set at 150% of the system average increase and is designed to gradually move
12 residential customers closer to the cost of service.

13 Q. Are you proposing any structural changes to the residential rate class?

A. Yes, we are proposing to eliminate the Residential Electric Heating rate (rate code
101) and have one consolidated residential class that structurally looks more like
the current electric heating rate. So instead of one flat energy charge for the entire
year, the proposed residential rate will have a seasonal factor with a flat energy

charge in the summer and a declining block structure during the 8 non-summer
 months (October - May). The new structure will continue to benefit customers that
 have increased usage in the winter from electric heating.

4

5

Q. Please describe the changes to the rate code 100 general purpose Residential Rate to recover this percentage increase.

6 A. The proposed rate continues to have a Customer Charge that is designed to 7 recognize that the local facilities such as meter and service provide access to the system. The current charge is increased from \$22.00 per month to \$24.00 per month 8 9 in 2023 and then increased to \$26.00 per month in 2024. The remainder of the 10 assigned revenue is collected in the energy charge. The energy charge is flat in the 11 summer months with a declining block rate in the winter months that recognizes 12 increased winter usage. The use of a lower winter block matches costs and provides 13 for more efficient operation of the BPU system. This also recognizes the higher 14 load factor of heating customers and the lower per unit costs for delivery facilities 15 resulting from economies of scale in the distribution system.

16 Q. Have you provided bill comparisons for the Residential Rates?

17 A. Yes. I have provided residential bill comparisons in Table 5-4 of the Report.

18 Q. What rate increase is proposed for the Small General Service (SGS) rate for 19 the test year?

- 20 A. The proposed increase is 1.75% on base rates. Current revenues in this class exceed
- 21 the cost of service; therefore a rate adjustment below the system average is justified.
- 22 Q. Please describe the changes to the rate code 200 Small General Service rate.

1 A. The proposed rates, as shown in Table 5-5 of Exhibit CEB-1, continue to be 2 structured with a Customer Charge, Facilities Charge, Demand Charge, and an Energy Charge. The Customer Charge is proposed to increase from \$40.00 per 3 4 month to \$42.00 in 2023 and \$44.00 in 2024. The 2023 Facilities Charge of \$3.38 5 per kW for secondary service or \$2.74 for primary service has been set using the 6 cost of service results as a guide. The rate continues to have a Demand Charge for 7 demand over 10 kW and the proposed rate is increased from \$5.57 to \$5.75 for 8 2023. The proposed Energy Charge consists of a flat energy charge per kWh for 9 the standard SGS class and a declining block structure during the winter months for 10 the SGS Electric Heating class.

11 Q. What rate increase is proposed for the Medium General Service (MGS) rate 12 for the test year?

13 The proposed increase is 1.75% on base rates. Current revenues in this class exceed A. 14 the cost of service; therefore a rate adjustment below the system average is justified. 15 Please describe the changes to the rate code 250 Medium General Service rate. **Q**. 16 The proposed rates, as shown in Table 5-6 of Exhibit CEB-1, continue to be A. 17 structured with a Customer Charge, Facilities Charge, Demand Charge, and an 18 Energy Charge. The Customer Charge is proposed to increase from \$85.00 per 19 month to \$90.00 in 2023 and \$95.00 in 2024. The 2023 Facilities Charge of \$4.22 20 per kW for secondary service or \$3.65 for primary service has been set using the 21 cost of service results as a guide. The rate continues to have a Demand Charge. The 22 Energy Charge continues to have an hour's use of demand structure with two blocks 23 to recognize high load factor use. For qualified electric heating customers (Rate 251) there is a winter block of the rate that is priced at a lower per kWh rate above
 300 kWh per kW.

Q. Please explain the hour's use of demand charge structure used for the Energy Charge for Rates 250, 300, And 400.

The hour's use of demand charge (Wright rate) was developed by Mr. Arthur 5 A. Wright in the 19th century to recognize both demand and load factor. The load factor 6 7 component recognizes the intensity of the use of demand. Among other benefits, it serves as a proxy for off peak energy use. For example, for the typical month about 8 9 230 hours are on peak while the remainder is off peak. By charging more for the 10 first 300 hours of use and less for over 300 hours, recognition is given to both the 11 lower unit fixed costs for higher load factor and the off peak nature of the extra use 12 of demand and energy on nights and weekends.

Q. What rate increase is proposed for the Large General Service (LGS) rate for the test year?

A. The proposed increase is 1.75% on base rates. Current revenues in this class exceed
 the cost of service; therefore a rate adjustment below the system average is justified.

17 Q. Please describe the changes to the rate code 300 Large General Service rate.

A. The proposed rates, as shown in Table 5-7 of Exhibit CEB-1, continue to be
structured with a Customer Charge, Facilities Charge, Demand Charge, and an
Energy Charge. The Customer Charge is proposed to increase from \$170.00 per
month to \$180.00 in 2023 and \$190.00 in 2024. The 2023 Facilities Charge of \$4.26
per kW for secondary service or \$3.68 for primary service has been set using the
cost of service results as a guide. The rate continues to have a Demand Charge. The

1		Energy Charge continues to have an hour's use of demand structure with two blocks
2		to recognize high load factor use. For qualified electric heating customers (Rate
3		301) there is a winter block of the rate that is priced at a lower per kWh rate.
4	Q.	What rate increase is proposed for the Large Power Service rate for the test
5		year?
6	A.	The proposed increase is 1.75% on base rates. Current revenues in this class exceed
7		the cost of service; therefore a rate adjustment below the system average is justified.
8	Q.	Please describe the changes to the rate code 400 Large Power Service rate.
9	A.	The proposed rates, as shown in Table 5-8 of Exhibit CEB-1, continue to be
10		structured with a Customer Charge, Facilities Charge, Demand Charge, and an
11		Energy Charge. The Customer Charge is proposed to increase from \$400.00 per
12		month to \$420.00 in 2023 and \$440.00 in 2024. The 2023 Facilities Charge of \$3.50
13		per kW for secondary service, \$2.95 per kW for primary service, or \$1.03 per kW
14		for substation service has been set using the cost of service results as a guide. The
15		rate continues to have a Demand Charge. The Energy Charge continues to have an
16		hour's use of demand structure with two blocks to recognize high load factor use.
17		For qualified electric heating customers (Rate 401) there is a winter block of the
18		rate that is priced at a lower per kWh rate.
19	Q.	What rate increase is proposed for the rate for Unified School District #500
20		(USD 500) for the test year?
21	A.	The proposed increase is 2.50% on base rates, which is in line with the system
22		average increase.
23	Q.	Please describe the changes to USD 500's rate.

A. The USD 500 rate is an energy only rate structure. The proposed rate is a 2.50%
 increase on the existing rate.

3	Q.	Is this rate applicable to all school districts in the BPU's service territory?
4	А.	No, this rate is specific to USD 500. All USD 500 schools use electricity for space
5		heating. All other school districts are currently charged using the applicable Small,
6		Medium, or Large General Service rate.
7	Q.	What rate increase is proposed for the Lighting Rate for the test year?
8	А.	The proposed increase is 2.50% on base rates, which is in line with the system
9		average increase.
10	Q.	Please describe the proposed Rate 700 Private Area Lighting and Traffic
11		Signal rates.
12	А.	All rate components of Rate 700 rates have been increased by 2.50%. Additionally,
13		we have recommended four new rates for LED lights that are not currently in the
14		rate manual.
15	IV. M	Iiscellaneous Rate Manual Changes
16	Q.	Please identify any additional changes recommended for the BPU rate manual.
17	А.	There are a number of recommended changes for the Rate Manual in addition to
18		the recommended rate increases. In general, the changes fall into the several
19		categories such as administrative, clerical, policy or application. The following list
20		provides the proposed Rate Manual changes:
21 22 23		• Merging of the standard Residential and Residential Electric Heat classes into one residential class that reflects the rate design of the current residential electric heating rate.

Modifying the ERC rider to allow for additional recovery over costs to build
 and maintain an ERC Reserve fund.

1 2		• Creation of a Green Rider for customers that want to procure energy with renewable attributes.
3 4		• Other language changes within the Rate Manual to align the language with current BPU practice.
5	Q.	Please explain the new Green Rider Program.
6	A.	The Green Rider is a new program targeted at large commercial and industrial
7		customers (generally the LGS and LPS rate classes), that allows customers to
8		purchase energy with Environmental Attributes (EA) to meet renewable energy
9		goals. Customers will be eligible to participate in the process to purchase EAs for
10		amounts of not less than 10,000 MWh annually and not more than the customer's
11		annual expected energy usage. The rider applies to customers who wish to achieve
12		environmental sustainability goals by purchasing from BPU exclusive EAs
13		associated with renewable energy that is either from facilities owned by BPU or

14 procured by BPU through a Purchased Power Agreement (PPA).

15 Q. Please explain the changes made to Energy Rate Component Rider (ERC).

16 The BPU's current rate manual includes an Energy Rate Component (ERC) rider. A. 17 The purpose of this rider is to provide for recovery of the Utility's power supply 18 costs not recovered in the base monthly charges, with a reconciliation adjustment 19 that provides for the treatment of over/under recoveries for each quarter period. 20 Due to the volatile nature of power supply costs, which often puts pressure on a 21 utility's cash balances, 1898 & Co. recommended creating a reserve fund tied 22 directly to variable fuel and purchased power costs recovered in the ERC. In prior 23 rate cases, if cash balances are declining due to the timing of cost recovery through 24 ERC Rider, increasing operating cash funded through base rate increases was the

1		only option for making up the temporary differences. Creation of an ERC Reserve
2		eliminates that need. The overall level of rate increases will remain the same – the
3		difference is if the ERC Reserve did not exist, base rate increases would need to be
4		higher to make up the difference.
5	Q.	Have you provided a copy of the proposed rates?
6	A.	Yes. The proposed rates are provided as Appendix B to the Report (Exhibit CEB-
7		1).
8	Q.	Please provide a list of other Rate Manual changes.
9	A.	The BPU Rate Manual consists of more than rates and includes items such as
10		definitions of terms used in the Rate Manual and various adjustment factors as well
11		as provisions applicable for rate schedules. The proposed changes include added
12		definitions to ease administration of the Rate Manual.
13	V. Su	ummary
14	Q.	Please summarize your testimony.
15	A.	Based on an overall base rate increase of 2.50% for the test period, the cost of
16		service study indicates that the residential class requires an increase above the
17		system average. The commercial classes – small, medium, large general, and large
18		power service require lower than system average increases. The new rates are
19		designed to track the cost of service study more closely as the charges move toward
20		the unit costs from the cost of service study.
21	Q.	Does this conclude your prepared direct testimony in this matter?
22	A.	Yes, it does.